Seconds Since the “Epoch”

I was supposed to write a RT (Real Time) logging which doesn’t call a single Linux CALL.
I had only seconds from 1st Jan 1970 (Called Eposh).

A value that approximates the number of seconds that have elapsed since the Epoch. A Coordinated Universal Time name (specified in terms of seconds (tm_sec), minutes (tm_min), hours (tm_hour), days since January 1 of the year (tm_yday), and calendar year minus 1900 (tm_year)) is related to a time represented as seconds since the Epoch, according to the expression below.

If the year is <1970 or the value is negative, the relationship is undefined. If the year is>=1970 and the value is non-negative, the value is related to a Coordinated Universal Time name according to the C-language expression, where tm_sec,  tm_min,  tm_hour,  tm_yday,  and  tm_year are all integer types:

tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
    (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
    ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400

The relationship between the actual time of day and the current value for seconds since the Epoch is unspecified.

How any changes to the value of seconds since the Epoch are made to align to a desired relationship with the current actual time is implementation-defined. As represented in seconds since the Epoch, each and every day shall be accounted for by exactly 86400 seconds.

Note:
The last three terms of the expression add in a day for each year that follows a leap year starting with the first leap year since the Epoch. The first term adds a day every 4 years starting in 1973, the second subtracts a day back out every 100 years starting in 2001, and the third adds a day back in every 400 years starting in 2001. The divisions in the formula are integer divisions; that is, the remainder is discarded leaving only the integer quotient.

You can convert epoch Seconds to current time please look at this LINK.

Xenomai Timer

Xenomai Timer :Xenomai has two time sources: the sytem timer, which counts the number of nanoseconds since 1970, and a hardware dependent high resolution counter which counts the time since an unspecified point in time (usually the system boot time). This hardware dependent high resolution counter is called “tsc” on a PC, and gave its name to Xenomai native API calls.rt_timer_tsc returns the value of this hardware dependent high-resolution counter.
rt_timer_info returns the same thing in the tsc member of the RT_TIMER_INFO structure, and the value of the system timer at exactly the same time as when the high-resolution counter was read.

This allows to have a correspondence between the two time sources.

rt_alarm_inquire is not related to this and returns some information
about a given alarm. Now, if you allow me, a little advice for the implementation of a “timer library”: you could be tempted to create only one periodic alarm object with Xenomai, and to manage a timer list yourself. Don’t do this. Creating an alarm object for each timer library object make Xenomai aware of the existence of all your application timers, this has several

advantages:
– it gives you information about all your timers in /proc/xenomai
– it allows Xenomai to use its anticipation algorithm for all your timers
– if you are concerned about the scalability of Xenomai timers list
management, you can check the options in the “Scalability” menu of
Xenomai configuration menu (“Real-time subsystem” sub-menu of kernel
configuration menu).
more about timers

Xenomai POSIX skin supports two clocks:
CLOCK_REALTIME maps to the nucleus system clock, keeping time as the amount of time since the Epoch, with a resolution of one system clock tick.

CLOCK_MONOTONIC maps to an architecture-dependent high resolution counter, so is suitable for measuring short time intervals. However, when used for sleeping (with clock_nanosleep()), the CLOCK_MONOTONIC clock has a resolution of one system clock tick, like the CLOCK_REALTIME clock.[1]